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Until now, research studies on childhood lead
exposure risk have identified risk factors but
not considered the relative weight for each
factor (1,2), considered relative weights but
not linked analysis to geographic location (3),
or linked analysis to geographic location at
highly aggregated levels (i.e., census block or
U.S. Postal Service ZIP code) but not consid-
ered relative weights (4–9). In this study we
estimate and apply relative weights for risk
factors at a very high geographic resolution:
the individual tax parcel unit level. In so
doing, this study provides a strong basis for
shifting from mitigative to preventive inter-
vention programs aimed at protecting chil-
dren from the adverse effects of lead. 

Medical professionals have long recog-
nized severe lead poisoning as a debilitating
disease. Since the late 1970s, however,
mounting research has shown that lead also
causes asymptomatic effects at levels far below
thresholds previously considered safe
(10–16). The adverse effects of lead, includ-
ing learning and behavioral disorders (e.g.,
attention deficit disorder and attention deficit
hyperactivity disorder), hearing impairment,
decreased intelligence quotient, and decreased
attention span, are particularly harmful in
children and often become apparent during
puberty—long after exposure has caused irre-
versible impacts (10–16). Thus, the Centers
for Disease Control and Prevention (CDC)
have lowered incrementally the threshold for
lead levels considered dangerous in children
by 88%—from 60 to 10 µg/dL—in the last
40 years. Furthermore, a new body of litera-
ture suggests that cognitive deficits may occur

at blood lead levels as low as 5 µg/dL (17,18).
For example, a recent study observed an
inverse relationship between blood lead con-
centrations below 5 µg/dL and scores on
reading and mathematics tests (17).

Despite substantial gains from the elimi-
nation of leaded gasoline, nearly one million
U.S. children still have blood lead levels above
the current CDC threshold of 10 µg/dL (19).
Current exposures result primarily from envi-
ronmental sources of lead incorporated into
infrastructure, including paint, water systems,
and soil. These intransigent sources of lead are
difficult and costly to abate; thus, protecting
children from lead exposure remains a daunting
task. Because even the most capable doctors
cannot easily diagnose low-level lead exposure,
screening for lead in high-risk populations is
critical to eradicating this disease. In addition,
shifting to preventive rather than mitigative
approaches requires characterization of the
housing stock for exposure risk and abatement
of sources of biologically available lead.

Exposure to lead-based paint is the lead-
ing cause of childhood lead poisoning today
(20). Fifty million U.S. homes still contain
lead-based paint, with lead concentrations
anywhere from 1% to 50% by dry weight
(21). Because of the expense of upkeep, lead-
based paint found in older, low-income hous-
ing runs the greatest risk of being in poor
condition. Young children easily ingest chips
of lead-based paint, which tastes sweet.
Household dust containing lead particles can
be more dangerous than paint chips, because
smaller particles are more easily absorbed by
both the gastrointestinal and pulmonary

tracts. By creating lead-contaminated dust
from already-existing sources, including those
that were previously undisturbed, both
household renovation and attempts to
remove lead-based paint can increase levels of
biologically available lead in the home (21).

A January 1999 report issued by the U.S.
General Accounting Office (GAO) revealed
that children in or targeted by federal health
care programs [e.g., Medicaid, the Women,
Infants, and Children (WIC) program, and
community health centers] exhibit elevated
blood lead levels at nearly five times the rate of
other children (22). Despite federal policies
requiring blood lead screening of these chil-
dren, less than 20% served by federal health
care programs are actually screened (22).

Over the 4-year period from 1995
through 1998, 373,619 children were
screened for lead in North Carolina (Table 1)
(23). Of these, 4.8% had blood lead levels at
or above the CDC’s threshold of 10 µg/dL.
Minority children exhibited the highest
prevalence rates, with African Americans at
7.2%, Native Americans at 6.2%, and
Hispanics at between 5% and 6%. Although
computation of blood lead data is compli-
cated, we can reasonably infer that a high per-
centage of children in the “Other” category
are Hispanic. Prevalence among white chil-
dren was 3.1%. Prevalence among children
receiving WIC assistance was 6.8%, com-
pared with 3.8% for non-WIC children. In
1998, 25% of children 1–2 years old under-
went screening in North Carolina, with 3.6%
exhibiting elevated blood lead levels.
Consistent with the findings of the GAO
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report (22), 42.9% of children receiving
Medicaid and 37.6% of children receiving
WIC assistance in North Carolina had under-
gone screening in 1997 (23).

Literature Review

In examining the factors that influence the
risk of lead exposure and uptake in children, it
is important to recognize the interrelation-
ships among risk factors. Age of housing,
urban/rural status, race/ethnicity, socioeco-
nomic status, and nutritional status all relate
to and influence one another, especially
regarding childhood lead poisoning. However,
studies disagree on which factors are the most
significant predictors of lead poisoning (7).

Data from phase 2 of the third National
Health and Nutrition Examination Survey
(NHANES III) (24) reveal a relatively high
prevalence of elevated blood lead levels in chil-
dren who live in housing built before 1973, as
well as in children who live in metropolitan
areas with populations greater than one million.
Lanphear et al. (7) associate high population
density, older housing, renter-occupied hous-
ing, and lower housing value with childhood
lead exposure in Monroe County, New York.
In contrast to the Northeast and Midwest, in
North Carolina older rural housing contains

more lead-based paint than urban housing and
poses a greater risk of lead poisoning (2). As is
true for much of the southeastern United
States, urban centers in North Carolina (e.g.,
Charlotte, Greensboro, and Raleigh–Durham)
experienced their major growth phase—in
terms of both people and new housing stock—
in the 1980s onward, after lead was banned
from use in paint.

Identification of the socioeconomic and
racial/ethnicity status of residential neighbor-
hoods can help determine a child’s risk level
for low-level lead poisoning. Sargent et al. (3)
evaluated risk factors for childhood lead expo-
sure in Massachusetts and identified several
significant independent associations, including
percentage of single-parent households,
median income, percentage African American,
percentage of children in poverty, percentage
of renter-occupied housing, median age of
housing, and blood lead screening rates (3).
According to phase 2 of NHANES III, the
prevalence of elevated blood lead levels for
children from low-income families was 8.0%,

eight times higher than that for children from
high-income families (19). The prevalence
among non-Hispanic black children was
11.2%, almost five times higher than that
among non-Hispanic white children of the
same age (2.3%) (19). The prevalence among
Mexican-American children was 4.0%, nearly
twice that of white children. Additionally,
non-Hispanic black race/ethnicity is an inde-
pendent predictor of elevated blood lead levels
for children between 1 and 5 years old (24).

Although race has been demonstrated as
an independent predictor for elevated blood
lead levels, it is unclear whether race serves as
a proxy for other conditions that may pose
risk (e.g., racial segregation) or whether a
race-based physiologic difference in uptake
exists. For example, according to NHANES
II, one reason black children are at higher risk
of lead poisoning may be that blacks have
lower intakes of dietary calcium than do
whites, a finding that has been corroborated
by several studies (25). Reasons for lower
dietary calcium in blacks include lactose
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Table 1. Estimated prevalence of elevated blood
lead levels among North Carolina children
screened for lead poisoning, 1995–1998.

Variable Subcategory Prevalence (%)

Racea Black 7.2
White 3.1

Native American 6.2
Other 5.9

Residence Rural county 5.2
Urban county 3.8

Incomeb WIC 6.8
Non-WIC 3.8

Overall 4.8
aThere are missing values for these variables. bAvailable
only for 1995 and 1996. Data from NCCLPPP (23). Figure 1. Study area counties.

Figure 2. Geographic resolution of U.S. Census data, Wilson County, North Carolina. Figure 3. Tax parcel units for Wilson County, North Carolina.



intolerance, cultural unfamiliarity with drink-
ing milk, poverty, restricted access to market,
and limited food storage facilities (25).

Several recent studies have used spatial
analysis and geographic information system
(GIS) technology to compare the spatial dis-
tribution of blood lead levels with identified
risk factors for exposures (4–9). These stud-
ies were implemented at the census tract,
block group, block, and/or U.S. Postal
Service ZIP code level of resolution and
build upon previous work that developed
guidelines for using GIS technology in envi-
ronmental epidemiology research and lead
exposure analysis (26,27).

Thus, considerable knowledge exists about
the risk factors for childhood lead exposure.
These include age, socioeconomic status,
race/ethnicity, nutritional status, and age and
urban/rural status of housing. Yet this knowl-
edge has not translated successfully into proac-
tive and preventive strategies to eradicate the

threat to children. One reason may be that the
scientific literature fails to characterize ade-
quately the importance of each factor relative
to the others. Furthermore, previous research
studies have not fully analyzed geographic
location as a predictor for low-level lead poi-
soning. This study extends previous work by
estimating exposure risk across a variety of risk
factors at a very fine geographic resolution.

Methods

The flexibility and comprehensiveness of GIS
technology and spatial analysis allow the inte-
gration of multifactorial components in an
aggregate risk model. The key to spatial analy-
sis is that most data contain a geographic com-
ponent that can be tied to a specific location,
such as a country, state, county, ZIP code, cen-
sus block, or specific address. Geographic cod-
ing allows users to explore and overlay data by
location, revealing relationships that are not
readily apparent in traditional spreadsheet

and/or statistical packages. Additionally, GIS
technology has specific capabilities that allow
users to produce clear and accessible maps and
data reports that can serve as powerful com-
munity outreach tools.

Using GIS technology as well as statistical
analysis, we have developed a predictive expo-
sure model for low-level childhood lead poi-
soning for six North Carolina counties. Figure
1 shows the location of the six study counties.
The counties represent four distinct geo-
graphic sectors: Buncombe in the western por-
tion of the state, Durham and Orange in the
central piedmont, Wilson and Edgecombe in
the eastern coastal plain, and New Hanover
on the southeast coast. Including study coun-
ties from the mountains, piedmont, coastal
plain, and coast allows for comparisons across
regional, topographic, economic, and cultural
zones. These variations are important for char-
acterizing risk across spatial dimensions.

Data

We used U.S. Census demographic data,
county tax assessor data, and North Carolina
blood lead screening data to construct the
lead exposure model.

U.S. Census data. Census demographic
information is available in three different geo-
graphic scales: tracts, block groups, and
blocks. Tracts designate the largest geo-
graphic areas. The most detailed and focused
information is contained in blocks. Blocks are
also combined into block groups, an interme-
diate category. Our GIS county projects con-
tain attribute themes for median household
income, percentage of children in poverty,
percentage of persons in poverty, percentage
of renter-occupied households, percentage of
single-parent households, percentage of
African Americans, and number of Hispanics
from the 1990 Census (29). Census variables
can be custom divided to target specific
demographic and socioeconomic groups.
Figure 2 maps the census track, block group,
and block outlines for Wilson County, North
Carolina. Most previous GIS studies of envi-
ronmental health issues have been applied at
this level of geographic resolution.

In addition to demographic data, county
models contain 1995 topologically integrated
geographic encoding and referencing (TIGER)
census street data (29). The TIGER data pro-
vide information on street names, locations,
and address numbers and are extremely useful
for converting the outcomes from the
research project into direct service public
health programs. 

Tax assessor data. County tax assessor
offices track a wide variety of information on
individual tax parcel units, all of which is
publicly available. We focus on residential
(vs. undeveloped or commercial) tax parcel
units. Residential tax parcel units typically
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Figure 4. Age of housing mapped at the tax parcel unit level in a Wilson County, North Carolina, neighborhood.



encompass a housing structure (either single
or multifamily) and its yard. A residential tax
parcel unit may be owned by a single individ-
ual or by a group; it may be unoccupied,
occupied by the owner, or occupied by
nonowners—either renters or otherwise. The
presence of specific county tax variables
depends on the sophistication of the data
monitored and targeted by the individual
county tax assessor office. Each of our county
models contains tax assessor parcel informa-
tion about year of construction. Other vari-
ables of interest include assessed tax value,
parcel unique identifier code, building class,
date remodeled (if any), construction type,
zoning codes, use codes, owner address, phys-
ical address, tax district, and renter/owner-
occupied status. Each of these variables speaks
to the general state of maintenance and repair
of the housing unit.

Figure 3 shows a map of Wilson County,
North Carolina, with each of the 34,928
individual tax parcel units outlined in black
(28). The dense black area in the middle of
the county is the town of Wilson. Figure 4
zooms in on a section of the town of Wilson
and maps age of housing in three categories
to show the level of detail made possible by
tax parcel level analysis.

Comparing Figures 3 and 4 with Figure 2
illustrates the enhanced analytic potential
associated with the high geographic resolu-
tion used in this study.

Blood lead screening data. Through a
negotiated confidentiality agreement with the
North Carolina Childhood Lead Poisoning
Prevention Program (NCCLPPP), each
model incorporates childhood lead screening
data for children born and screened between
1994 and 1999 (23). The screening data for
each county are geocoded to the individual
tax parcel unit (vs. street block) using the

household-level tax assessor databases. The
screening data include the child’s name, birth
date, test date, blood lead level, and address.
We also consolidated duplicate child screens
from the same residence. We take a conserva-
tive or protective approach (in terms of iden-
tifying biologically available lead) by retaining
entries with the highest blood lead level,
which is consistent with Lanphear et al. (7).
Match rates range from 53% to 86% across
counties. We were not able to geocode chil-
dren who did not list an address or listed
addresses that contain post office boxes or
were incomplete. In addition, the state data-
base included multiple examples of children
whose screening results were assigned to the
wrong county. We deleted these observations
from our analysis. Overall, our match rates
compare favorably with previous studies.
Table 2 presents target population and
screening rates for children 0–2 years old
(1995–1998) as well as geocoding match
rates for children 0–6 years old (1995–1999)
in each of the six study counties. The overall
match rate indicates geocoding percentage
matched before elimination of incomplete or
post office box addresses. The trimmed
match rate represents percentage matched
after deletion of incomplete and post office
box addresses. A previous study using address
geocoding reported match rates of 20% in
rural counties to 98% in urban counties (26).
Lower match rates in less urban counties can
be attributed to the difficulty in geocoding
rural route addresses.

Previous GIS studies that obtained higher
match rates geocode screening data to a street
grid rather than to an individual tax parcel
unit. These analyses typically use TIGER cen-
sus street data that incorporate street location,
street type, and address range. In comparing
street geocoding using TIGER data with parcel

geocoding using tax assessor data, we deter-
mined that street geocoding often locates gen-
eral house vicinity but rarely pinpoints the
exact housing unit. Conversely, parcel geocod-
ing locates children within the exact residential
unit. As Figure 4 demonstrates, age of housing,
an important risk factor, can vary substantially
within the same block. Thus, geocoding to the
tax parcel level provides a better basis for con-
ducting statistical analysis.

Spatial and Statistical Analysis

We combined tax assessor, U.S. Census
demographic, and North Carolina blood lead
screening data into one spatial overlay theme.
Although each of these data sets started out as
a unique entity with a specific geographic res-
olution, they shared a common geographic
spine. GIS software allowed us to combine
the separate data sets into one large database,
based on common geographic location. By
integrating data, we were able to perform
statistical analysis on all data layers together.
The lead screening data served as the depen-
dent variable and were used to calibrate the
relative weights that should be assigned to
each of the risk factors. We applied multivari-
ate statistical analysis to 11,523 observations
geocoded to the individual tax parcel unit.

On the basis of the existing literature on
risk factors for lead exposure, we analyzed the
relationship between observed blood lead lev-
els geocoded to the individual tax parcel unit
and age of housing, median income, percent-
age renter occupied, percentage of persons in
poverty, percentage of children in poverty,
percentage of one-parent households, and
percentage African American as well as indi-
cator variables for each of the six counties.
Hispanics represent the fastest-growing sub-
population in North Carolina. The 1990
census data undercounted Hispanics, and
that population has grown substantially in
the past ten 10 years. We chose not to
include number of Hispanics in our analyses
because of the widely recognized poor qual-
ity of this these data in North Carolina.
With the release of 2000 Census data, we
hope to improve upon this portion of the
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Table 2. Target population and screening rates for children 0–2 years old, 1995–1998, and GIS geocoding
match rates for children 0–6 years old, 1995–1999.

Target Percentage Overall geocode Geocode match rate
Region populationa screeneda match rateb for trimmed datab

Buncombe Co. 18,229 18.3 50.4 57.8
Durham Co. 24,196 21.7 60.7 66.7
Edgecombe Co. 7,049 56.0 47.2 53.4
New Hanover Co. 14,617 30.7 67.6 70.6
Orange Co. 8,997 16.8 72.1 86.5
Wilson Co. 8,014 12.0 63.3 73.8
North Carolina total 823,040 23.6 — —
aSource: NCCLPPP (23). bCalculated within GIS projects. 

Table 3. Summary statistics on data used in the statistical analysis.

Explanatory variable Data source Geographic unit Min/max Mean Median

Year built County tax assessor office Individual tax parcel 1787/1999 1964 1971
Black (%) 1990 U.S. Census Block 0/100 35.90 13.59
Single parent (%) 1990 U.S. Census Block 0/100 13.4 8.33
Renter-occupied (%) 1990 U.S. Census Block 0/100 36.9 26.09
Median income ($) 1990 U.S. Census Block group 4,999/98,406 27,959 27,500
Children in poverty (%) 1990 U.S. Census Block group 0/100 19.6 12.08

Abbreviations: Max, maximum; min, minimum.

Table 4. Results of the multivariate statistical
analysis.

Variable Coefficient SD p-Value

Year built –0.044 0.00026 0.00
Median income –4.42 × 10–6 6.84 × 10–7 0.00
Percentage 0.002 0.00021 0.00

African American
Buncombe 9.85 0.5025 0.00
Durham 9.81 0.5017 0.00
Edgecombe 10.10 0.5021 0.00
New Hanover 9.92 0.5039 0.00
Orange 9.93 0.5042 0.00
Wilson 10.30 0.5044 0.00

F(9,11514) = 4816.12; adjusted R2 = 0.7900; root mean
square error = 0.61995 



analysis. Table 3 lists each of the explanatory
variables explored, as well as the data source,
some descriptive statistics, and the geographic
unit of analysis at which the data are coded.

We first examined the data using general
additive models to search for the importance
of nonlinear and county-specific effects. These
analyses did not demonstrate any reason to
favor nonlinear over linear models, although
county-specific effects were noted. These
analyses were, however, characterized by long-
tailed residuals. Therefore, we estimated

log-linear models, where the dependent vari-
able was given by ln[max(blood lead level, 1)].
The resulting models were characterized by
well-behaved (i.e., Gaussian) residuals.
Analysis of variance (ANOVA) analysis sug-
gested that percentage of children in poverty,
percentage of one-parent households, and per-
centage of renter-occupied housing did not
add explanatory power, so they were dropped
from model estimation. Percentage of persons
in poverty and median income were both sta-
tistically significant variables if included indi-

vidually, with the latter appearing to be a bet-
ter explanatory variable. As a result, we
dropped percentage of persons in poverty
from model estimation. We also examined a
wide variety of interactive effects among vari-
ables, none of which appeared significant.

Once the general additive models
approach failed to demonstrate nonlinear
effects, we switched to log-linear ordinary least
squares analysis with robust standard errors.
Table 4 shows the statistical model we eventu-
ally used to construct the exposure risk indices.

All of the significant variables had the
expected sign [e.g., the higher the median
income, the lower the blood lead level (BLL);
the older the home, the higher the blood lead
level]. The coefficients were subsequently
imported into the county GIS projects to
construct a risk index value for each residen-
tial tax parcel unit in the county for which
full data exist, according to the following six
equations:

Buncombe:
Estimated ln(BLL) 

= 9.85 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American)

Durham:
Estimated ln(BLL) 

= 9.81 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American)

Edgecombe:
Estimated ln(BLL) 

= 10.10 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American)

New Hanover:
Estimated ln(BLL) 

= 9.92 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American)

Orange:
Estimated ln(BLL) 

= 9.93 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American)

Wilson:
Estimated ln(BLL) 

= 10.30 + (–0.0044 × year built) 
+ (–4.42 × 10–6 × median income) 
+ (0.002 × percent African American).

Previous GIS studies of childhood lead
exposure encountered problems with spatial
autocorrelation (5). At least two considera-
tions make spatial autocorrelation problematic
in childhood lead exposure analysis. To the
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Figure 5. Lead risk priorities mapped at the tax parcel unit level for the city of Durham, North Carolina.

Table 5. Implications of model results for housing intervention programs.

County Priority 1 (%) Priority 2 (%) Priority 3 (%) Priority 4 (%)

Buncombe
Housing stock 5 25 30 40
Elevated blood lead levels 30 25 20 25

Durham
Housing stock 10 20 25 45
Elevated blood lead levels 35 30 30 5

Edgecombe
Housing stock 10 25 35 25
Elevated blood lead levels 35 30 30 5

New Hanover
Housing stock 5 15 35 45
Elevated blood lead levels 35 20 35 10

Orange
Housing stock 10 20 30 40
Elevated blood lead levels 20 40 25 15

Wilson
Housing stock 10 15 35 40
Elevated blood lead levels 40 30 20 5



extent that houses in neighborhoods or areas
tend to be built at the same time and that
neighbors tend to share common demograph-
ics, we may expect spatial autocorrelation
problems within geographically based analy-
ses. However, the very high geographic resolu-
tion at which our study was undertaken
means that we have age of housing available at
the tax parcel unit level. We tested whether
the inclusion of age of housing at the tax par-
cel unit level is sufficient to eliminate prob-
lems with spatial autocorrelation in our model
estimation. First, we plotted an empirical vari-
ogram of residuals against distance between
observations (using the latitude and longitude
measures available within the GIS). This vari-
ogram was flat. Second, an ANOVA compari-
son of models with and without spatial
correlation is statistically insignificant. For
these two reasons, we concluded that we did
not need to include corrections for spatial
autocorrelation in our model estimation.

Discussion

As a result of the statistical analysis, we created
priority themes consisting of household-level
maps coded by the lead exposure risk index.
The county models contain priority themes
with four categories. The categories are based
on natural break statistical analysis. The basis
for categorization, as well as the number of
risk priority categories, is in some sense arbi-
trary. The flexibility of the GIS modeling
approach allows for the construction of risk
categories as they are useful to specific prob-
lems. For illustration, we chose four categories
based on natural break statistical analysis given
how counties are likely to use the GIS models
in shaping preventive intervention programs.
Alternative formulations using a different
number of categories determined by standard
deviates, quantiles, or other means are easy to
implement with GIS techniques.

Presented below is a sample priority map-
ping drawn from the Durham County GIS
project to demonstrate the usefulness of spa-
tial analysis in identifying children at high risk
for exposure to lead. Figure 5 depicts the pri-
ority categories for residences in the city of
Durham, Durham County, North Carolina.
Dark blue areas represent priority 1 parcels,
which are predicted most likely to contain
lead-based paint hazards. Priority 2 and 3
parcels are colored medium and light green
and are less likely than priority 1 parcels to
contain lead-based paint hazards. Yellow rep-
resents priority 4 parcels, which are least likely
to contain lead-based paint hazards. White
areas represent commercial or industrial prop-
erties. Based on this analysis, the corridors
along Highway 147 represent areas that the
Durham County Health Department may
wish to target for lead abatement, public edu-
cation, and community outreach efforts.

Compared with southern and northeastern
Durham, central Durham is depicted with a
high concentration of dark blue (priority 1)
and green (priority 2 and 3) parcels. 

Table 5 provides a sense of how the risk
model might allow county health departments
and community organizations to use scarce
resources more effectively. It shows the per-
centage of the housing stock included in the
priority 1–4 risk categories for the study coun-
ties. This analysis indicates that by focusing
on 30% of the housing stock in Durham
County, for example, intervention programs
could address 70% of the estimated elevated
blood lead levels. Table 5 provides analogous
statistics for the other five study counties.

The detail provided by the GIS maps also
allows for block- or even house-level planning
for intervention programs. Using city market-
ing directories, state licensing agencies, and
Internet searches, we created community
databases that spatially locate businesses and
institutions where children and parents tend
to spend time, including schools, physicians’
offices, churches, recreation facilities, and day
care centers. In addition, we used county tax
assessor data to spatially locate parks, play-
grounds, swimming pools, and other public
gathering grounds. Figure 6 provides a
detailed example of how community data-
bases are uploaded into GIS projects as point
themes.
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Figure 6. Community databases mapped at the tax parcel unit level for a Durham, North Carolina,
neighborhood.



Figure 6 depicts the lead risk priority
themes overlay for a Durham County neigh-
borhood. The color coding for the priority
categories is the same as for Figure 5. The red
symbols indicate businesses and institutions
where children and families tend to spend
time. The local health department might, for
example, sponsor a lead poisoning awareness
health fair at the church located at the inter-
section of Scout Drive and Enterprise Street
(outlined in yellow in Figure 6), an area char-
acterized by a heavy concentration of priority
1 parcels.

The data-rich spatial analysis projects
include a mechanism for personalized contact
(using only publicly available data) with every
homeowner in the study counties. Using the
models in conjunction with city marketing
directories allows for direct contact with most
current residents (which makes tenants a
reachable target group), as well as business
owners and community leaders (e.g., the com-
munity database on churches includes the
name and address of the pastor/priest/minister
of the church).

Conclusions and Directions for
Future Research
Policy makers, public health officials, child
advocates, and others currently lack the
appropriate infrastructure to evaluate chil-
dren’s potential exposure to lead across a
broad range of risks. Unable to identify where
the highest risk of exposure occurs, children’s
environmental health programs remain mit-
igative instead of preventive. Thus, children
must first become sick before they can be pro-
tected. In this article we describe a predictive
model of childhood lead exposure risk speci-
fied at the individual tax parcel unit level.

Although the model represents an impor-
tant innovation over previous GIS-based
work addressing childhood lead exposure
risks, several limitations are important to
note. The model development and statistical
analysis rely on county tax assessor and North
Carolina screening data quality. For example,
parcel geocoding match rates depend on
address accuracy reported by both the tax
assessor and the State of North Carolina.
Current models use 1990 Census data; as the
2000 Census data become available in GIS
format, we will update our models. In addi-
tion, the 2000 screening data for North
Carolina indicate higher screening rates, both
statewide and within individual counties. As
these data are released and GIS software
evolves, we will incorporate these enhance-
ments. In subsequent analyses, we also hope

to incorporate assessed tax value at the tax
parcel unit level as a proxy for economic
demographic characteristics. The approach
described in this article will not capture non-
housing–related aspects of lead exposure risk,
such as cultural sources of lead (from tradi-
tional medicines or cosmetics) or hobby-
related lead use (stained glass or fishing
weights).

Besides updating models with current tax
assessor and 2000 Census data, we are collect-
ing environmental samples from homes in the
study counties in order to validate and cali-
brate the childhood lead risk models.
Environmental samples include at least
10 X-ray fluorescence readings, two dust wipe
samples, and a composite soil sample to dis-
tinguish between the presence of lead and the
presence of biologically available lead. This
effort will further strengthen the analytic
power of the models.

The model described in this article
enables individuals and communities to
design and implement programs that protect
children before they become sick. The meth-
ods applied to the six study counties can be
extended to the other 94 North Carolina
counties and nationally. This modeling
approach can be expanded to include expo-
sure risk indices for a variety of children’s
environmental health issues, including
asthma triggers, allergens, pesticides, and
other chemicals. GIS technology holds
tremendous potential for revolutionizing how
environmental health organizations conceive
their agendas as well as how they design and
implement both conventional programs and
those associated with emerging issues.
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